Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 9473, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20238527

ABSTRACT

Post-COVID-19 condition refers to a range of persisting physical, neurocognitive, and neuropsychological symptoms following SARS-CoV-2 infection. Recent evidence revealed that post-COVID-19 syndrome patients may suffer from cardiac dysfunction and are at increased risk for a broad range of cardiovascular disorders. This randomized, sham-control, double-blind trial evaluated the effect of hyperbaric oxygen therapy (HBOT) on the cardiac function of post-COVID-19 patients with ongoing symptoms for at least three months after confirmed infection. Sixty patients were randomized to receive 40 daily HBOT or sham sessions. They underwent echocardiography at baseline and 1-3 weeks after the last protocol session. Twenty-nine (48.3%) patients had reduced global longitudinal strain (GLS) at baseline. Of them, 13 (43.3%) and 16 (53.3%) were allocated to the sham and HBOT groups, respectively. Compared to the sham group, GLS significantly increased following HBOT (- 17.8 ± 1.1 to - 20.2 ± 1.0, p = 0.0001), with a significant group-by-time interaction (p = 0.041). In conclusion, post-COVID-19 syndrome patients despite normal EF often have subclinical left ventricular dysfunction that is characterized by mildly reduced GLS. HBOT promotes left ventricular systolic function recovery in patients suffering from post COVID-19 condition. Further studies are needed to optimize patient selection and evaluate long-term outcomes.This study was registered with ClinicalTrials.gov, number NCT04647656 on 01/12/2020.


Subject(s)
COVID-19 , Cardiovascular Diseases , Hyperbaric Oxygenation , Humans , COVID-19/therapy , Post-Acute COVID-19 Syndrome , SARS-CoV-2
2.
Neuroimage Clin ; 36: 103218, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2131972

ABSTRACT

INTRODUCTION: Post-COVID-19 condition refers to a range of persisting physical, neurocognitive, and neuropsychological symptoms after SARS-CoV-2 infection. Abnormalities in brain connectivity were found in recovered patients compared to non-infected controls. This study aims to evaluate the effect of hyperbaric oxygen therapy (HBOT) on brain connectivity in post-COVID-19 patients. METHODS: In this randomized, sham-controlled, double-blind trial, 73 patients were randomized to receive 40 daily sessions of HBOT (n = 37) or sham treatment (n = 36). We examined pre- and post-treatment resting-state brain functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) scans to evaluate functional and structural connectivity changes, which were correlated to cognitive and psychological distress measures. RESULTS: The ROI-to-ROI analysis revealed decreased internetwork connectivity in the HBOT group which was negatively correlated to improvements in attention and executive function scores (p < 0.001). Significant group-by-time interactions were demonstrated in the right hippocampal resting state function connectivity (rsFC) in the medial prefrontal cortex (PFWE = 0.002). Seed-to-voxel analysis also revealed a negative correlation in the brief symptom inventory (BSI-18) score and in the rsFC between the amygdala seed, the angular gyrus, and the primary sensory motor area (PFWE = 0.012, 0.002). Positive correlations were found between the BSI-18 score and the left insular cortex seed and FPN (angular gyrus) (PFWE < 0.0001). Tractography based structural connectivity analysis showed a significant group-by-time interaction in the fractional anisotropy (FA) of left amygdala tracts (F = 7.81, P = 0.007). The efficacy measure had significant group-by-time interactions (F = 5.98, p = 0.017) in the amygdala circuit. CONCLUSIONS: This study indicates that HBOT improves disruptions in white matter tracts and alters the functional connectivity organization of neural pathways attributed to cognitive and emotional recovery in post-COVID-19 patients. This study also highlights the potential of structural and functional connectivity analysis as a promising treatment response monitoring tool.

3.
NeuroImage. Clinical ; 2022.
Article in English | EuropePMC | ID: covidwho-2045160

ABSTRACT

Introduction Post-COVID-19 condition refers to a range of persisting physical, neurocognitive, and neuropsychological symptoms after SARS-CoV-2 infection. Abnormalities in brain connectivity were found in recovered patients compared to non-infected controls. This study aims to evaluate the effect of hyperbaric oxygen therapy (HBOT) on brain connectivity in post-COVID-19 patients. Methods In this randomized, sham-controlled, double-blind trial, 73 patients were randomized to receive 40 daily sessions of HBOT (n=37) or sham treatment (n=36). We examined pre- and post-treatment resting-state brain functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) scans to evaluate functional and structural connectivity changes, which were correlated to cognitive and psychological distress measures. Results The ROI-to-ROI analysis revealed decreased internetwork connectivity in the HBOT group which was negatively correlated to improvements in attention and executive function scores (p<0.001). Significant group-by-time interactions were demonstrated in the right hippocampal resting state function connectivity (rsFC) in the medial prefrontal cortex (PFWE = 0.002). Seed-to-voxel analysis also revealed a negative correlation in the brief symptom inventory (BSI-18) score and in the rsFC between the amygdala seed, the angular gyrus, and the primary sensory motor area (PFWE = 0.012, 0.002). Positive correlations were found between the BSI-18 score and the left insular cortex seed and FPN (angular gyrus) (PFWE < 0.0001). Tractography based structural connectivity analysis showed a significant group-by-time interaction in the fractional anisotropy (FA) of left amygdala tracts (F= 7.81, P=0.007). The efficacy measure had significant group-by-time interactions (F=5.98, p=0.017) in the amygdala circuit. Conclusions This study indicates that HBOT improves disruptions in white matter tracts and alters the functional connectivity organization of neural pathways attributed to cognitive and emotional recovery in post-COVID-19 patients. This study also highlights the potential of structural and functional connectivity analysis as a promising treatment response monitoring tool.

4.
Sci Rep ; 12(1): 11252, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1931485

ABSTRACT

Post-COVID-19 condition refers to a range of persisting physical, neurocognitive, and neuropsychological symptoms after SARS-CoV-2 infection. The mechanism can be related to brain tissue pathology caused by virus invasion or indirectly by neuroinflammation and hypercoagulability. This randomized, sham-control, double blind trial evaluated the effect of hyperbaric oxygen therapy (HBOT or HBO2 therapy) on post-COVID-19 patients with ongoing symptoms for at least 3 months after confirmed infection. Seventy-three patients were randomized to receive daily 40 session of HBOT (n = 37) or sham (n = 36). Follow-up assessments were performed at baseline and 1-3 weeks after the last treatment session. Following HBOT, there was a significant group-by-time interaction in global cognitive function, attention and executive function (d = 0.495, p = 0.038; d = 0.477, p = 0.04 and d = 0.463, p = 0.05 respectively). Significant improvement was also demonstrated in the energy domain (d = 0.522, p = 0.029), sleep (d = - 0.48, p = 0.042), psychiatric symptoms (d = 0.636, p = 0.008), and pain interference (d = 0.737, p = 0.001). Clinical outcomes were associated with significant improvement in brain MRI perfusion and microstructural changes in the supramarginal gyrus, left supplementary motor area, right insula, left frontal precentral gyrus, right middle frontal gyrus, and superior corona radiate. These results indicate that HBOT can induce neuroplasticity and improve cognitive, psychiatric, fatigue, sleep and pain symptoms of patients suffering from post-COVID-19 condition. HBOT's beneficial effect may be attributed to increased brain perfusion and neuroplasticity in regions associated with cognitive and emotional roles.


Subject(s)
COVID-19 , Hyperbaric Oxygenation , Brain/diagnostic imaging , COVID-19/complications , COVID-19/therapy , Humans , Hyperbaric Oxygenation/methods , Pain , SARS-CoV-2
5.
J Med Case Rep ; 16(1): 80, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1708646

ABSTRACT

BACKGROUND: The coronavirus disease 2019 pandemic has resulted in a growing population of individuals who experience a wide range of persistent symptoms referred to as "long COVID." Symptoms include neurocognitive impairment and fatigue. Two potential mechanisms could be responsible for these long-term unremitting symptoms: hypercoagulability, which increases the risk of blood vessel occlusion, and an uncontrolled continuous inflammatory response. Currently, no known treatment is available for long COVID. One of the options to reverse hypoxia, reduce neuroinflammation, and induce neuroplasticity is hyperbaric oxygen therapy. In this article, we present the first case report of a previously healthy athletic individual who suffered from long COVID syndrome treated successfully with hyperbaric oxygen therapy. CASE PRESENTATION: A previously healthy 55-year-old Caucasian man presented 3 months after severe coronavirus disease 2019 infection with long COVID syndrome. His symptoms included a decline in memory, multitasking abilities, energy, breathing, and physical fitness. After evaluation that included brain perfusion magnetic resonance imaging, diffusion tensor imaging, computerized cognitive tests, and cardiopulmonary test, he was treated with hyperbaric oxygen therapy. Each session included exposure to 90 minutes of 100% oxygen at 2 atmosphere absolute pressure with 5-minute air breaks every 20 minutes for 60 sessions, 5 days per week. Evaluation after completing the treatment showed significant improvements in brain perfusion and microstructure by magnetic resonance imaging and significant improvement in memory with the most dominant effect being on nonverbal memory, executive functions, attention, information procession speed, cognitive flexibility, and multitasking. The improved cognitive functions correlated with the increased cerebral blood flow in brain regions as measured by perfusion magnetic resonance imaging. With regard to physical capacity, there was a 34% increase in the maximum rate of oxygen consumed during exercise and a 44% improvement in forced vital capacity. The improved physical measurements correlated with the regain of his pre-COVID physical capacity. CONCLUSIONS: We report the first case of successfully treated long COVID symptoms with hyperbaric oxygen therapy with improvements in cognition and cardiopulmonary function. The beneficial effects of hyperbaric oxygen shed additional light on the pathophysiology of long COVID. As this is a single case report, further prospective randomized control studies are needed.


Subject(s)
COVID-19 , Hyperbaric Oxygenation , COVID-19/complications , Diffusion Tensor Imaging , Humans , Male , Middle Aged , Oxygen , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
6.
Sci Rep ; 11(1): 16543, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1360208

ABSTRACT

Since COVID-19 risk of reinfection is of great concern, the safety and efficacy of the mRNA-based vaccines in previously infected populations should be assessed. We studied 78 individuals previously infected with SARS-CoV-19, who received a single dose of BNT162b2 mRNA COVID-19 vaccine, and 1:2 ratio matched infection-naïve cohort who received two injections. The evaluation procedure included symptom monitoring, and serological tests. Among the post-infected population, the median IgG-S response after the first vaccine dose was 3.35 AU, compared to 2.38 AU after the second vaccine injection in the infection naive group. A strong correlation was demonstrated between IgG-S level before vaccination, and the corresponding responses after a single vaccine dose (r = 0.8, p < 0.001) in the post infected population. Short-term severe symptoms that required medical attention were found in 6.8% among the post-infected individuals, while none were found in the infection naïve population. Our data suggest that a single vaccine dose is sufficient to induce an intense immune response in post-infected population regardless of seropositivity. Although some short-term safety issues were observed compared to the infection naïve population, a single dose regimen can be considered safe in post-infected populations.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Reinfection/prevention & control , SARS-CoV-2/immunology , Vaccination/adverse effects , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunity, Humoral , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Reinfection/immunology , Reinfection/virology , Retrospective Studies , SARS-CoV-2/isolation & purification , Vaccination/methods
7.
Sci Rep ; 11(1): 13780, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294487

ABSTRACT

Most patients infected with SARS-CoV-2 are asymptomatic or mildly symptomatic. However, the early and late antibody kinetics, and the association between antibody levels, clinical symptoms, and disease phase in these patients have not yet been fully defined. Confirmed SARS-CoV-2 patients and their household contacts were evaluated over a period four months. The evaluation procedure included symptom monitoring, viral load and serology analysis every ten days. A total of 1334 serum samples were collected from 135 patients and analyzed using three assays for IgG-N, IgG-S and IgM antibodies. Of the study participants, 97% were seropositive during the study, and two distinct clusters were identified. These clusters were significantly different in their inflammatory related symptoms. Peak IgG-S was 40.0 AU/ml for the non-inflammatory cluster and 71.5 AU/ml for the inflammatory cluster (P = 0.006), whereas IgG-N peaks were 4.3 and 5.87 (P = 0.023) respectively. Finally, a decision tree model was designed to predict the disease phase based on the serological titer levels, and had an overall accuracy of 80.7%. The specific profile of seroconversion and decay of serum antibodies can be used to predict the time-course from the acute infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL